1.10.2 problem 2

Internal problem ID [272]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 2
Date solved : Tuesday, September 30, 2025 at 03:54:28 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=2*diff(diff(y(x),x),x)-3*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{\frac {3 x}{2}} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 19
ode=D[y[x],{x,2}]-3*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{3} c_1 e^{3 x}+c_2 \end{align*}
Sympy. Time used: 0.072 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{\frac {3 x}{2}} \]