56.27.8 problem Ex 8

Internal problem ID [14227]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107
Problem number : Ex 8
Date solved : Thursday, October 02, 2025 at 09:26:54 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x) = exp(2*x)+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (2 x +2 c_1 -1\right ) {\mathrm e}^{2 x}}{4}-\frac {x}{2}+c_2 \]
Mathematica. Time used: 0.056 (sec). Leaf size: 31
ode=D[y[x],{x,2}]-2*D[y[x],x]==Exp[2*x]+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x}{2}+\frac {1}{4} e^{2 x} (2 x-1+2 c_1)+c_2 \end{align*}
Sympy. Time used: 0.117 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(2*x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \frac {x}{2} + \left (C_{2} + \frac {x}{2}\right ) e^{2 x} \]