Internal
problem
ID
[14229]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VII,
Linear
differential
equations
with
constant
coefficients.
Article
51.
Cauchy
linear
equation.
Page
114
Problem
number
:
Ex
1
Date
solved
:
Thursday, October 02, 2025 at 09:26:56 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+x*diff(y(x),x)-y(x) = x*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+x*D[y[x],x]-y[x]==x*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - x*log(x) + x*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)