56.28.4 problem Ex 4

Internal problem ID [14232]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114
Problem number : Ex 4
Date solved : Thursday, October 02, 2025 at 09:26:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }+6 y&=x \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 37
ode:=(1+x)^2*diff(diff(y(x),x),x)-(1+x)*diff(y(x),x)+6*y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +1\right ) \sin \left (\sqrt {5}\, \ln \left (x +1\right )\right ) c_2 +\left (x +1\right ) \cos \left (\sqrt {5}\, \ln \left (x +1\right )\right ) c_1 +\frac {x}{5}+\frac {1}{30} \]
Mathematica. Time used: 0.285 (sec). Leaf size: 49
ode=(x+1)^2*D[y[x],{x,2}]-(x+1)*D[y[x],x]+6*y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{30} (6 x+1)+c_2 (x+1) \cos \left (\sqrt {5} \log (x+1)\right )+c_1 (x+1) \sin \left (\sqrt {5} \log (x+1)\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (x + 1)**2*Derivative(y(x), (x, 2)) - (x + 1)*Derivative(y(x), x) + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), (x, 2)) - x + 6*y(x) + Derivative(y(x), (x, 2)))/(x + 1) cannot be solved by the factorable group method