Internal
problem
ID
[14238]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VII,
Linear
differential
equations
with
constant
coefficients.
Article
52.
Summary.
Page
117
Problem
number
:
Ex
7
Date
solved
:
Thursday, October 02, 2025 at 09:27:02 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+9*x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = (ln(x)+1)^2; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+6*x^3*D[y[x],{x,3}]+9*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==(1+Log[x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + 9*x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) - (log(x) + 1)**2 + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)