56.30.4 problem Ex 4

Internal problem ID [14249]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number : Ex 4
Date solved : Thursday, October 02, 2025 at 09:27:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y&=\left (1-x \right )^{2} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 16
ode:=(1-x)*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = (1-x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 x +{\mathrm e}^{x} c_1 +x^{2}+1 \]
Mathematica. Time used: 0.048 (sec). Leaf size: 22
ode=(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==(1-x)^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^2+x-c_2 x+c_1 e^x+1 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - (1 - x)**2 + (1 - x)*Derivative(y(x), (x, 2)) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(x + Derivative(y(x), (x, 2)) - 2) + y(x) - Derivative(y(x), (x, 2)) + 1)/x cannot be solved by the factorable group method