56.32.5 problem Ex 5

Internal problem ID [14263]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number : Ex 5
Date solved : Thursday, October 02, 2025 at 09:27:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=x*diff(diff(y(x),x),x)-(2*x-1)*diff(y(x),x)+(x-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_2 \ln \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 17
ode=x*D[y[x],{x,2}]-(2*x-1)*D[y[x],x]+(x-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x (c_2 \log (x)+c_1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (x - 1)*y(x) - (2*x - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False