Internal
problem
ID
[14265]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VIII,
Linear
differential
equations
of
the
second
order.
Article
55.
Summary.
Page
129
Problem
number
:
Ex
7
Date
solved
:
Thursday, October 02, 2025 at 09:27:25 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(2*x^3-1)*diff(diff(y(x),x),x)-6*x^2*diff(y(x),x)+6*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^3-1)*D[y[x],{x,2}]-6*x^2*D[y[x],x]+6*x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*x**2*Derivative(y(x), x) + 6*x*y(x) + (2*x**3 - 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)