56.35.1 problem Ex 1

Internal problem ID [14278]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 59. Linear equations with particular integral known. Page 136
Problem number : Ex 1
Date solved : Friday, October 03, 2025 at 07:29:38 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 17
ode:=(x^2-2*x+2)*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \,x^{2}+c_3 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.062 (sec). Leaf size: 27
ode=(x^2-2*x+2)*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (c_2 x^2+2 c_1 x+c_3 e^x\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) + (x**2 - 2*x + 2)*Derivative(y(x), (x, 3)) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(x*Derivative(y(x), (x, 2)) - x*Derivative(y(x), (x, 3)) + 2*Derivative(y(x), (x, 3)))/2 + y(x) - Derivative(y(x), (x, 3)))/x cannot be solved by the factorable group method