56.36.7 problem Ex 7

Internal problem ID [14286]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139
Problem number : Ex 7
Date solved : Thursday, October 02, 2025 at 09:27:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y&=0 \end{align*}
Maple
ode:=x^2*(-x^3+1)*diff(diff(y(x),x),x)-x^3*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x^2*(1-x^3)*D[y[x],{x,2}]-x^3*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*Derivative(y(x), x) + x**2*(1 - x**3)*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False