57.4.5 problem 1(e)

Internal problem ID [14329]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 1, First order differential equations. Section 1.3.1 Separable equations. Exercises page 26
Problem number : 1(e)
Date solved : Thursday, October 02, 2025 at 09:31:38 AM
CAS classification : [_quadrature]

\begin{align*} x^{\prime }&=a x+b \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(x(t),t) = a*x(t)+b; 
dsolve(ode,x(t), singsol=all);
 
\[ x = -\frac {b}{a}+{\mathrm e}^{a t} c_1 \]
Mathematica. Time used: 0.026 (sec). Leaf size: 30
ode=D[x[t],t]==a*x[t]+b; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to -\frac {b}{a}+c_1 e^{a t}\\ x(t)&\to -\frac {b}{a} \end{align*}
Sympy. Time used: 0.070 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
a = symbols("a") 
b = symbols("b") 
x = Function("x") 
ode = Eq(-a*x(t) - b + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} e^{a t} - \frac {b}{a} \]