57.4.30 problem 26

Internal problem ID [14354]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 1, First order differential equations. Section 1.3.1 Separable equations. Exercises page 26
Problem number : 26
Date solved : Thursday, October 02, 2025 at 09:32:19 AM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} y^{\prime }&=\frac {y^{2}+2 y t}{t^{2}} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(y(t),t) = (y(t)^2+2*t*y(t))/t^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {t^{2}}{-t +c_1} \]
Mathematica. Time used: 0.097 (sec). Leaf size: 23
ode=D[y[t],t]==(y[t]^2+2*t*y[t])/t^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {t^2}{t-c_1}\\ y(t)&\to 0 \end{align*}
Sympy. Time used: 0.115 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(Derivative(y(t), t) - (2*t*y(t) + y(t)**2)/t**2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {t^{2}}{C_{1} - t} \]