Internal
problem
ID
[14384]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
1,
First
order
differential
equations.
Section
1.4.1.
Integrating
factors.
Exercises
page
41
Problem
number
:
15(d)
Date
solved
:
Thursday, October 02, 2025 at 09:35:58 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=t^2*diff(y(t),t)+2*t*y(t)-y(t)^2 = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],t]+2*t*y[t]-y[t]^2==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), t) + 2*t*y(t) - y(t)**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)