57.9.3 problem 1(c)

Internal problem ID [14411]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110
Problem number : 1(c)
Date solved : Thursday, October 02, 2025 at 09:36:51 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=12 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 32
ode:=diff(diff(x(t),t),t)+diff(x(t),t)+x(t) = 12; 
dsolve(ode,x(t), singsol=all);
 
\[ x = {\mathrm e}^{-\frac {t}{2}} \sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_2 +{\mathrm e}^{-\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_1 +12 \]
Mathematica. Time used: 0.011 (sec). Leaf size: 49
ode=D[x[t],{t,2}]+D[x[t],t]+x[t]==12; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to c_2 e^{-t/2} \cos \left (\frac {\sqrt {3} t}{2}\right )+c_1 e^{-t/2} \sin \left (\frac {\sqrt {3} t}{2}\right )+12 \end{align*}
Sympy. Time used: 0.098 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) + Derivative(x(t), t) + Derivative(x(t), (t, 2)) - 12,0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \left (C_{1} \sin {\left (\frac {\sqrt {3} t}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} t}{2} \right )}\right ) e^{- \frac {t}{2}} + 12 \]