57.14.5 problem 1(e)

Internal problem ID [14462]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130
Problem number : 1(e)
Date solved : Thursday, October 02, 2025 at 09:37:31 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{\prime \prime \prime }+x^{\prime \prime }&=2 \,{\mathrm e}^{t}+3 t^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 32
ode:=diff(diff(diff(x(t),t),t),t)+diff(diff(x(t),t),t) = 2*exp(t)+3*t^2; 
dsolve(ode,x(t), singsol=all);
 
\[ x = \frac {t^{4}}{4}+3 t^{2}-t^{3}+{\mathrm e}^{-t} c_1 +{\mathrm e}^{t}+c_2 t +c_3 \]
Mathematica. Time used: 0.136 (sec). Leaf size: 40
ode=D[x[t],{t,3}]+D[x[t],{t,2}]==2*Exp[t]+3*t^2; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {t^4}{4}-t^3+3 t^2+e^t+c_3 t+c_1 e^{-t}+c_2 \end{align*}
Sympy. Time used: 0.067 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-3*t**2 - 2*exp(t) + Derivative(x(t), (t, 2)) + Derivative(x(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} + C_{2} t + C_{3} e^{- t} + \frac {t^{4}}{4} - t^{3} + 3 t^{2} + e^{t} \]