Internal
problem
ID
[14481]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.4
Impulsive
sources.
Exercises
page
173
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:37:42 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(x(t),t)+3*x(t) = Dirac(t-1)+Heaviside(t-4); ic:=[x(0) = 1]; dsolve([ode,op(ic)],x(t),method='laplace');
ode=D[x[t],t]+3*x[t]==DiracDelta[t-1]+UnitStep[t-4]; ic={x[0]==1}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-Dirac(t - 1) + 3*x(t) - Heaviside(t - 4) + Derivative(x(t), t),0) ics = {x(0): 1} dsolve(ode,func=x(t),ics=ics)