Internal
problem
ID
[14485]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.4
Impulsive
sources.
Exercises
page
173
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 09:37:45 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(x(t),t),t)+x(t) = 3*Dirac(t-2*Pi); ic:=[x(0) = 0, D(x)(0) = 1]; dsolve([ode,op(ic)],x(t),method='laplace');
ode=D[x[t],{t,2}]+x[t]==3*DiracDelta[t-2*Pi]; ic={x[0]==0,Derivative[1][x][0 ]==1}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-3*Dirac(t - 2*pi) + x(t) + Derivative(x(t), (t, 2)),0) ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 1} dsolve(ode,func=x(t),ics=ics)