Internal
problem
ID
[14508]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
4,
Linear
Systems.
Exercises
page
218
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 09:38:00 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)-2*y(t), diff(y(t),t) = 3*x(t)-4*y(t)]; ic:=[x(0) = 3, y(0) = 1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==x[t]-2*y[t],D[y[t],t]==3*x[t]-4*y[t]}; ic={x[0]==3,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) + 4*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)