58.1.4 problem 1(d)

Internal problem ID [14530]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number : 1(d)
Date solved : Thursday, October 02, 2025 at 09:38:13 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=(x^2+1)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 x +c_2}{x^{2}+1} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 20
ode=(1+x^2)*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x+c_1}{x^2+1} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False