Internal
problem
ID
[305]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
2.
Linear
Equations
of
Higher
Order.
Section
2.3
(Homogeneous
equations
with
constant
coefficients).
Problems
at
page
134
Problem
number
:
35
Date
solved
:
Tuesday, September 30, 2025 at 03:54:43 AM
CAS
classification
:
[[_high_order, _missing_x]]
Using reduction of order method given that one solution is
ode:=6*diff(diff(diff(diff(y(x),x),x),x),x)+5*diff(diff(diff(y(x),x),x),x)+25*diff(diff(y(x),x),x)+20*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=6*D[y[x],{x,4}]+5*D[y[x],{x,3}]+25*D[y[x],{x,2}]+20*D[y[x],x]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 20*Derivative(y(x), x) + 25*Derivative(y(x), (x, 2)) + 5*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)