1.10.37 problem 37

Internal problem ID [307]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 37
Date solved : Tuesday, September 30, 2025 at 03:54:44 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }&=y^{\prime \prime \prime } \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=18 \\ y^{\prime }\left (0\right )&=12 \\ y^{\prime \prime }\left (0\right )&=13 \\ y^{\prime \prime \prime }\left (0\right )&=7 \\ \end{align*}
Maple. Time used: 0.040 (sec). Leaf size: 18
ode:=diff(diff(diff(diff(y(x),x),x),x),x) = diff(diff(diff(y(x),x),x),x); 
ic:=[y(0) = 18, D(y)(0) = 12, (D@@2)(y)(0) = 13, (D@@3)(y)(0) = 7]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 11+5 x +3 x^{2}+7 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 20
ode=D[y[x],{x,4}]==D[y[x],{x,3}]; 
ic={y[0]==18,Derivative[1][y][0] ==12,Derivative[2][y][0] ==13,Derivative[3][y][0] ==7}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 x^2+5 x+7 e^x+11 \end{align*}
Sympy. Time used: 0.049 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {y(0): 18, Subs(Derivative(y(x), x), x, 0): 12, Subs(Derivative(y(x), (x, 2)), x, 0): 13, Subs(Derivative(y(x), (x, 3)), x, 0): 7} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 x^{2} + 5 x + 7 e^{x} + 11 \]