Internal
problem
ID
[14590]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
2,
section
2.2
(Separable
equations).
Exercises
page
47
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 09:43:25 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=3*x^2+9*x*y(x)+5*y(x)^2-(6*x^2+4*x*y(x))*diff(y(x),x) = 0; ic:=[y(2) = -6]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(3*x^2+9*x*y[x]+5*y[x]^2)-(6*x^2+4*x*y[x])*D[y[x],x]==0; ic={y[2]==-6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2 + 9*x*y(x) - (6*x**2 + 4*x*y(x))*Derivative(y(x), x) + 5*y(x)**2,0) ics = {y(2): -6} dsolve(ode,func=y(x),ics=ics)