58.4.23 problem 23(a)

Internal problem ID [14593]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number : 23(a)
Date solved : Thursday, October 02, 2025 at 09:43:37 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 439
ode:=x^2+2*y(x)^2+(4*x*y(x)-y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\frac {\left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}{2}+\frac {8 x^{2} c_1^{2}}{\left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}+2 c_1 x}{c_1} \\ y &= \frac {-\frac {\left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}{4}-\frac {4 x^{2} c_1^{2}}{\left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}+2 c_1 x -\frac {i \sqrt {3}\, \left (-16 x^{2} c_1^{2}+\left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{2}/{3}}\right )}{4 \left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}}{c_1} \\ y &= -\frac {16 i \sqrt {3}\, c_1^{2} x^{2}-i \sqrt {3}\, \left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{2}/{3}}+16 x^{2} c_1^{2}-8 c_1 x \left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}}+\left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{2}/{3}}}{4 \left (4+68 x^{3} c_1^{3}+4 \sqrt {33 x^{6} c_1^{6}+34 x^{3} c_1^{3}+1}\right )^{{1}/{3}} c_1} \\ \end{align*}
Mathematica. Time used: 29.925 (sec). Leaf size: 731
ode=(x^2+2*y[x]^2)+(4*x*y[x]-y[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt [3]{17 x^3+\sqrt {33 x^6+34 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^2}{\sqrt [3]{17 x^3+\sqrt {33 x^6+34 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x\\ y(x)&\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{17 x^3+\sqrt {33 x^6+34 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}-\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{17 x^3+\sqrt {33 x^6+34 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x\\ y(x)&\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{17 x^3+\sqrt {33 x^6+34 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}-\frac {2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{17 x^3+\sqrt {33 x^6+34 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x\\ y(x)&\to \frac {8 \sqrt [3]{2} x^2+4 \sqrt [3]{\sqrt {33} \sqrt {x^6}+17 x^3} x+2^{2/3} \left (\sqrt {33} \sqrt {x^6}+17 x^3\right )^{2/3}}{2 \sqrt [3]{\sqrt {33} \sqrt {x^6}+17 x^3}}\\ y(x)&\to \frac {8 i \sqrt [3]{2} \sqrt {3} x^2-8 \sqrt [3]{2} x^2+8 \sqrt [3]{\sqrt {33} \sqrt {x^6}+17 x^3} x-i 2^{2/3} \sqrt {3} \left (\sqrt {33} \sqrt {x^6}+17 x^3\right )^{2/3}-2^{2/3} \left (\sqrt {33} \sqrt {x^6}+17 x^3\right )^{2/3}}{4 \sqrt [3]{\sqrt {33} \sqrt {x^6}+17 x^3}}\\ y(x)&\to \frac {\left (\sqrt {33} \sqrt {x^6}+17 x^3\right )^{2/3} \text {Root}\left [2 \text {$\#$1}^3-1\&,3\right ]-4 \sqrt [3]{-2} x^2+2 \sqrt [3]{\sqrt {33} \sqrt {x^6}+17 x^3} x}{\sqrt [3]{\sqrt {33} \sqrt {x^6}+17 x^3}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + (4*x*y(x) - y(x)**2)*Derivative(y(x), x) + 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out