Internal
problem
ID
[14631]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
2,
section
2.3
(Linear
equations).
Exercises
page
56
Problem
number
:
41
Date
solved
:
Thursday, October 02, 2025 at 09:44:49 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = -8*x*y(x)^2+4*x*(1+4*x)*y(x)-8*x^3-4*x^2+1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==-8*x*y[x]^2+4*x*(4*x+1)*y[x]-(8*x^3+4*x^2-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x**3 + 4*x**2 - 4*x*(4*x + 1)*y(x) + 8*x*y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)