Internal
problem
ID
[14661]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
2,
Section
2.4.
Special
integrating
factors
and
transformations.
Exercises
page
67
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:49:01 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=8*x^2*y(x)^3-2*y(x)^4+(5*x^3*y(x)^2-8*x*y(x)^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(8*x^2*y[x]^3-2*y[x]^4)+(5*x^3*y[x]^2-8*x*y[x]^3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x**2*y(x)**3 + (5*x**3*y(x)**2 - 8*x*y(x)**3)*Derivative(y(x), x) - 2*y(x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)