1.10.48 problem 55

Internal problem ID [318]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 55
Date solved : Tuesday, September 30, 2025 at 03:57:18 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,x^{2}+c_3 \,x^{2} \ln \left (x \right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 35
ode=x^3*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]+x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} (2 c_1-c_2) x^2+\frac {1}{2} c_2 x^2 \log (x)+c_3 \end{align*}
Sympy. Time used: 0.095 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} + C_{3} x^{2} \log {\left (x \right )} \]