58.7.14 problem 14

Internal problem ID [14669]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number : 14
Date solved : Thursday, October 02, 2025 at 09:49:54 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +y+1\right ) y^{\prime }+1+4 x +3 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (3\right )&=-4 \\ \end{align*}
Maple. Time used: 0.286 (sec). Leaf size: 34
ode:=4*x+3*y(x)+1+(x+y(x)+1)*diff(y(x),x) = 0; 
ic:=[y(3) = -4]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -\frac {x}{\operatorname {LambertW}\left (-\left (x -2\right ) {\mathrm e}^{-1}\right )}+\frac {2}{\operatorname {LambertW}\left (-\left (x -2\right ) {\mathrm e}^{-1}\right )}-2 x +1 \]
Mathematica. Time used: 61.125 (sec). Leaf size: 197
ode=(4*x+3*y[x]+1)+(x+y[x]+1)*D[y[x],x]==0; 
ic={y[-2]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {(-2)^{2/3} \left (-2 x \log \left (\frac {3 (-2)^{2/3} (y(x)+2 x-1)}{y(x)+x+1}\right )+(2 x-1) \log \left (-\frac {3 (-2)^{2/3} (x-2)}{y(x)+x+1}\right )+\log \left (\frac {3 (-2)^{2/3} (y(x)+2 x-1)}{y(x)+x+1}\right )+y(x) \left (\log \left (-\frac {3 (-2)^{2/3} (x-2)}{y(x)+x+1}\right )-\log \left (\frac {3 (-2)^{2/3} (y(x)+2 x-1)}{y(x)+x+1}\right )+1\right )+x+1\right )}{9 (y(x)+2 x-1)}=\frac {1}{9} (-2)^{2/3} \log (x-2)+\frac {1}{27} (-2)^{2/3} \left (-1-3 i \pi -3 \log (4)-3 \log \left (-9 (-2)^{2/3}\right )+3 \log \left (12 (-2)^{2/3}\right )\right ),y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x + (x + y(x) + 1)*Derivative(y(x), x) + 3*y(x) + 1,0) 
ics = {y(3): -4} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions