Internal
problem
ID
[14671]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.1.
Basic
theory
of
linear
differential
equations.
Exercises
page
113
Problem
number
:
1
(b)
Date
solved
:
Thursday, October 02, 2025 at 09:50:03 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+5*diff(y(x),x)+6*y(x) = exp(x); ic:=[y(0) = 5, D(y)(1) = 7]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+5*D[y[x],x]+6*y[x]==Exp[x]; ic={y[0]==5,Derivative[1][y][1]==7}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*y(x) - exp(x) + 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 5, Subs(Derivative(y(x), x), x, 1): 7} dsolve(ode,func=y(x),ics=ics)