58.8.4 problem 4 (a)

Internal problem ID [14673]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number : 4 (a)
Date solved : Thursday, October 02, 2025 at 09:50:05 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 \,{\mathrm e}^{2 x}+c_2 \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 20
ode=D[y[x],{x,2}]-4*D[y[x],x]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \left (c_2 e^{2 x}+c_1\right ) \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{2 x}\right ) e^{x} \]