Internal
problem
ID
[14675]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.1.
Basic
theory
of
linear
differential
equations.
Exercises
page
113
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 09:50:06 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; ic:=[y(1) = 3, D(y)(1) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; ic={y[1]==3,Derivative[1][y][1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x),0) ics = {y(1): 3, Subs(Derivative(y(x), x), x, 1): 2} dsolve(ode,func=y(x),ics=ics)