58.9.6 problem 6

Internal problem ID [14685]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:50:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x^{2} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=(x^3-x^2)*diff(diff(y(x),x),x)-(x^3+2*x^2-2*x)*diff(y(x),x)+(2*x^2+2*x-2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left ({\mathrm e}^{x} c_2 +c_1 x \right ) \]
Mathematica. Time used: 0.043 (sec). Leaf size: 36
ode=(x^3-x^2)*D[y[x],{x,2}]-(x^3+2*x^2-2*x)*D[y[x],x]+(2*x^2+2*x-2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt {1-x} x \left (c_2 x-c_1 e^x\right )}{\sqrt {x-1}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**3 - x**2)*Derivative(y(x), (x, 2)) + (2*x**2 + 2*x - 2)*y(x) - (x**3 + 2*x**2 - 2*x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False