Internal
problem
ID
[14761]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.3.
The
method
of
undetermined
coefficients.
Exercises
page
151
Problem
number
:
30
Date
solved
:
Thursday, October 02, 2025 at 09:50:53 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+6*diff(y(x),x)+9*y(x) = 27*exp(-6*x); ic:=[y(0) = -2, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+6*D[y[x],x]+9*y[x]==27*Exp[-6*x]; ic={y[0]==-2,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) + 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 27*exp(-6*x),0) ics = {y(0): -2, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)