58.11.37 problem 37

Internal problem ID [14768]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number : 37
Date solved : Thursday, October 02, 2025 at 09:50:58 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=3 x^{2}-4 \sin \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+y(x) = 3*x^2-4*sin(x); 
ic:=[y(0) = 0, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \left (2 x +6\right ) \cos \left (x \right )+3 x^{2}-\sin \left (x \right )-6 \]
Mathematica. Time used: 0.091 (sec). Leaf size: 23
ode=D[y[x],{x,2}]+y[x]==3*x^2-4*Sin[x]; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 x^2-\sin (x)+2 (x+3) \cos (x)-6 \end{align*}
Sympy. Time used: 0.065 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**2 + y(x) + 4*sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 x^{2} + \left (2 x + 6\right ) \cos {\left (x \right )} - \sin {\left (x \right )} - 6 \]