Internal
problem
ID
[14771]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.3.
The
method
of
undetermined
coefficients.
Exercises
page
151
Problem
number
:
40
Date
solved
:
Thursday, October 02, 2025 at 09:51:01 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-6*diff(diff(y(x),x),x)+9*diff(y(x),x)-4*y(x) = 8*x^2+3-6*exp(2*x); ic:=[y(0) = 1, D(y)(0) = 7, (D@@2)(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+9*D[y[x],x]-4*y[x]==8*x^2+3-6*Exp[2*x]; ic={y[0]==1,Derivative[1][y][0] ==7,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**2 - 4*y(x) + 6*exp(2*x) + 9*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - 3,0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 7, Subs(Derivative(y(x), (x, 2)), x, 0): 0} dsolve(ode,func=y(x),ics=ics)