Internal
problem
ID
[14780]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.3.
The
method
of
undetermined
coefficients.
Exercises
page
151
Problem
number
:
49
Date
solved
:
Thursday, October 02, 2025 at 09:53:29 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-16*y(x) = x^2*sin(2*x)+x^4*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-16*y[x]==x^2*Sin[2*x]+x^4*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**4*exp(2*x) - x**2*sin(2*x) - 16*y(x) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)