58.13.5 problem 5

Internal problem ID [14816]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number : 5
Date solved : Thursday, October 02, 2025 at 09:55:16 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (2 \ln \left (x \right )\right )+c_2 \cos \left (2 \ln \left (x \right )\right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 22
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos (2 \log (x))+c_2 \sin (2 \log (x)) \end{align*}
Sympy. Time used: 0.099 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (2 \log {\left (x \right )} \right )} + C_{2} \cos {\left (2 \log {\left (x \right )} \right )} \]