58.13.10 problem 10

Internal problem ID [14821]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number : 10
Date solved : Thursday, October 02, 2025 at 09:55:21 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=x^2*diff(diff(y(x),x),x)-5*x*diff(y(x),x)+10*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{3} \left (c_1 \sin \left (\ln \left (x \right )\right )+c_2 \cos \left (\ln \left (x \right )\right )\right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 22
ode=x^2*D[y[x],{x,2}]-5*x*D[y[x],x]+10*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^3 (c_2 \cos (\log (x))+c_1 \sin (\log (x))) \end{align*}
Sympy. Time used: 0.106 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 5*x*Derivative(y(x), x) + 10*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{3} \left (C_{1} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \cos {\left (\log {\left (x \right )} \right )}\right ) \]