Internal
problem
ID
[14900]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
7,
Systems
of
linear
differential
equations.
Section
7.1.
Exercises
page
277
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 09:56:24 AM
CAS
classification
:
system_of_ODEs
ode:=[2*diff(x(t),t)+diff(y(t),t)-x(t)-y(t) = -2*t, diff(x(t),t)+diff(y(t),t)+x(t)-y(t) = t^2]; dsolve(ode);
ode={2*D[x[t],t]+D[y[t],t]-x[t]-y[t]==-2*t,D[x[t],t]+D[y[t],t]+x[t]-y[t]==t^2}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*t - x(t) - y(t) + 2*Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-t**2 + x(t) - y(t) + Derivative(x(t), t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)