Internal
problem
ID
[14923]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
7,
Systems
of
linear
differential
equations.
Section
7.7.
Exercises
page
375
Problem
number
:
1
Date
solved
:
Thursday, October 02, 2025 at 09:56:36 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)+y(t)-z(t), diff(y(t),t) = 2*x(t)+3*y(t)-4*z(t), diff(z(t),t) = 4*x(t)+y(t)-4*z(t)]; dsolve(ode);
ode={D[x[t],t]==x[t]+y[t]-z[t],D[y[t],t]==2*x[t]+3*y[t]-4*z[t],D[z[t],t]==4*x[t]+y[t]-4*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) - y(t) + z(t) + Derivative(x(t), t),0),Eq(-2*x(t) - 3*y(t) + 4*z(t) + Derivative(y(t), t),0),Eq(-4*x(t) - y(t) + 4*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)