Internal
problem
ID
[14950]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
11,
The
nth
order
homogeneous
linear
differential
equation.
Section
11.8,
Exercises
page
583
Problem
number
:
1
(d)
Date
solved
:
Thursday, October 02, 2025 at 09:56:54 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^3*diff(diff(x(t),t),t)-(t^3+2*t^2-t)*diff(x(t),t)+(t^2+t-1)*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=t^3*D[x[t],{t,2}]-(t^3+2*t^2-t)*D[x[t],t]+(t^2+t-1)*x[t]==0; ic={}; DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**3*Derivative(x(t), (t, 2)) + (t**2 + t - 1)*x(t) - (t**3 + 2*t**2 - t)*Derivative(x(t), t),0) ics = {} dsolve(ode,func=x(t),ics=ics)
NotImplementedError : The given ODE Derivative(x(t), t) - (t**3*Derivative(x(t), (t, 2)) + t**2*x(t) + t*x(t) - x(t))/(t*(t**2 + 2*t - 1)) cannot be solved by the factorable group method