1.11.25 problem 25

Internal problem ID [346]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.5 (Nonhomogeneous equations and undetermined coefficients). Problems at page 161
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 03:57:36 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = x*(exp(-x)-exp(-2*x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-x} \left (x^{2}-2 x +2 c_2 +\left (x^{2}-2 c_1 +2 x +2\right ) {\mathrm e}^{-x}\right )}{2} \]
Mathematica. Time used: 0.054 (sec). Leaf size: 42
ode=D[y[x],{x,2}]+3*D[y[x],{x,1}]+2*y[x]==x*(Exp[-x]-Exp[-2*x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^{-2 x} \left (x^2+e^x \left (x^2-2 x+2+2 c_2\right )+2 x+2+2 c_1\right ) \end{align*}
Sympy. Time used: 0.258 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(exp(-x) - exp(-2*x)) + 2*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + \frac {x^{2}}{2} - x + \left (C_{2} + \frac {x^{2}}{2} + x\right ) e^{- x}\right ) e^{- x} \]