Internal
problem
ID
[14965]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
12,
Sturm-Liouville
problems.
Section
12.1,
Exercises
page
596
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 09:57:08 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=2*x*diff(y(x),x)+(x^2+1)*diff(diff(y(x),x),x)+lambda/(x^2+1)*y(x) = 0; ic:=[y(0) = 0, y(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[(x^2+1)*D[y[x],x],x]+\[Lambda]/(x^2+1)*y[x]==0; ic={y[0]==0,y[1]==0}; DSolve[{ode,ic},{y[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(x)/(x**2 + 1) + 2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)),0) ics = {y(0): 0, y(1): 0} dsolve(ode,func=y(x),ics=ics)
ValueError : Couldnt solve for initial conditions