59.6.2 problem 12.1 (ii)

Internal problem ID [15032]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 12, Homogeneous second order linear equations. Exercises page 118
Problem number : 12.1 (ii)
Date solved : Thursday, October 02, 2025 at 10:02:11 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=3 \\ \end{align*}
Maple. Time used: 0.041 (sec). Leaf size: 11
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 3]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3 \,{\mathrm e}^{2 x} x \]
Mathematica. Time used: 0.009 (sec). Leaf size: 13
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 e^{2 x} x \end{align*}
Sympy. Time used: 0.096 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 x e^{2 x} \]