Internal
problem
ID
[15083]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
19,
CauchyEuler
equations.
Exercises
page
174
Problem
number
:
19.1
(vii)
Date
solved
:
Thursday, October 02, 2025 at 10:02:48 AM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=4*t^2*diff(diff(x(t),t),t)+8*t*diff(x(t),t)+5*x(t) = 0; ic:=[x(1) = 2, D(x)(1) = 0]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=4*t^2*D[x[t],{t,2}]+8*t*x[t]+5*x[t]==0; ic={x[1]==2,Derivative[1][x][1 ]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(4*t**2*Derivative(x(t), (t, 2)) + 8*t*Derivative(x(t), t) + 5*x(t),0) ics = {x(1): 2, Subs(Derivative(x(t), t), t, 1): 0} dsolve(ode,func=x(t),ics=ics)