59.13.7 problem 20.3

Internal problem ID [15094]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 20, Series solutions of second order linear equations. Exercises page 195
Problem number : 20.3
Date solved : Thursday, October 02, 2025 at 10:02:58 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} -y-3 x y^{\prime }+x \left (1-x \right ) y^{\prime \prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.024 (sec). Leaf size: 60
Order:=6; 
ode:=x*(1-x)*diff(diff(y(x),x),x)-3*x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (x +2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \ln \left (x \right ) c_2 +\left (1+3 x +5 x^{2}+7 x^{3}+9 x^{4}+11 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \]
Mathematica. Time used: 0.022 (sec). Leaf size: 63
ode=x*(1-x)*D[y[x],{x,2}]-3*x*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (x^4+x^3+x^2+\left (4 x^3+3 x^2+2 x+1\right ) x \log (x)+x+1\right )+c_2 \left (5 x^5+4 x^4+3 x^3+2 x^2+x\right ) \]
Sympy. Time used: 0.321 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x \left (\frac {27 x^{4}}{40} - \frac {9 x^{3}}{8} + \frac {3 x^{2}}{2} - \frac {3 x}{2} + 1\right ) + C_{1} + O\left (x^{6}\right ) \]