Internal
problem
ID
[15138]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
10
Date
solved
:
Thursday, October 02, 2025 at 10:04:13 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*(ln(x)-ln(y(x)))*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(Log[x]-Log[y[x]])*D[y[x],x]-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(log(x) - log(y(x)))*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)