Internal
problem
ID
[15174]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
60
Date
solved
:
Thursday, October 02, 2025 at 10:06:42 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(4*y(x)+2*x+3)*diff(y(x),x)-2*y(x)-x-1 = 0; dsolve(ode,y(x), singsol=all);
ode=(4*y[x]+2*x+3)*D[y[x],x]-2*y[x]-x-1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + (2*x + 4*y(x) + 3)*Derivative(y(x), x) - 2*y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)