60.2.5 problem Problem 5

Internal problem ID [15185]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 2, DIFFERENTIAL EQUATIONS OF THE SECOND ORDER AND HIGHER. Problems page 172
Problem number : Problem 5
Date solved : Thursday, October 02, 2025 at 10:06:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y&=2 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 16
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = 2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,x^{2}+c_1 \,x^{3}+\frac {1}{3} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 21
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 x^3+c_1 x^2+\frac {1}{3} \end{align*}
Sympy. Time used: 0.197 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} x^{2} + C_{2} x^{3} + \frac {1}{3} \]