Internal
problem
ID
[15212]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
2,
DIFFERENTIAL
EQUATIONS
OF
THE
SECOND
ORDER
AND
HIGHER.
Problems
page
172
Problem
number
:
Problem
43
Date
solved
:
Thursday, October 02, 2025 at 10:07:19 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(1+x)^2*diff(diff(y(x),x),x)+(1+x)*diff(y(x),x)+y(x) = 2*cos(ln(1+x)); dsolve(ode,y(x), singsol=all);
ode=(1+x)^2*D[y[x],{x,2}]+(1+x)*D[y[x],x]+y[x]==2*Cos[Log[1+x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 1)**2*Derivative(y(x), (x, 2)) + (x + 1)*Derivative(y(x), x) + y(x) - 2*cos(log(x + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), (x, 2)) - y(x) + 2*cos(log(x + 1)) - Derivative(y(x), (x, 2)))/(x + 1) cannot be solved by the factorable group method