60.2.35 problem Problem 50

Internal problem ID [15215]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 2, DIFFERENTIAL EQUATIONS OF THE SECOND ORDER AND HIGHER. Problems page 172
Problem number : Problem 50
Date solved : Thursday, October 02, 2025 at 10:07:22 AM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} {y^{\prime \prime }}^{3}+y^{\prime \prime }+1&=x \end{align*}
Maple. Time used: 0.037 (sec). Leaf size: 222
ode:=diff(diff(y(x),x),x)^3+diff(diff(y(x),x),x)+1 = x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\int \int \frac {\left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{2}/{3}}-12}{\left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{1}/{3}}}d x d x}{6}+c_1 x +c_2 \\ y &= -\frac {\int \int \frac {i \sqrt {3}\, \left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{2}/{3}}+12 i \sqrt {3}+\left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{2}/{3}}-12}{\left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{1}/{3}}}d x d x}{12}+c_1 x +c_2 \\ y &= \frac {\int \int \frac {\left (i \sqrt {3}-1\right ) \left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{2}/{3}}+12 i \sqrt {3}+12}{\left (-108+108 x +12 \sqrt {81 x^{2}-162 x +93}\right )^{{1}/{3}}}d x d x}{12}+c_1 x +c_2 \\ \end{align*}
Mathematica
ode=D[y[x],{x,2}]^3+D[y[x],{x,2}]+1==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy. Time used: 33.977 (sec). Leaf size: 371
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), (x, 2))**3 + Derivative(y(x), (x, 2)) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + \frac {6 \sqrt {3} C_{2} x - 6 i C_{2} x + 4 \sqrt [3]{18} i \iint \frac {1}{\sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}}\, dx\, dx + 2^{\frac {2}{3}} \cdot 3^{\frac {5}{6}} \iint \sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}\, dx\, dx + \sqrt [3]{12} i \iint \sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}\, dx\, dx}{6 \left (\sqrt {3} - i\right )}, \ y{\left (x \right )} = C_{1} + \frac {6 \sqrt {3} C_{2} x + 6 i C_{2} x - 4 \sqrt [3]{18} i \iint \frac {1}{\sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}}\, dx\, dx + 2^{\frac {2}{3}} \cdot 3^{\frac {5}{6}} \iint \sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}\, dx\, dx - \sqrt [3]{12} i \iint \sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}\, dx\, dx}{6 \left (\sqrt {3} + i\right )}, \ y{\left (x \right )} = C_{1} + C_{2} x + \frac {\int \left (2 \sqrt [3]{18} \int \frac {1}{\sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}}\, dx - \sqrt [3]{12} \int \sqrt [3]{- 9 x + \sqrt {3} \sqrt {27 x^{2} - 54 x + 31} + 9}\, dx\right )\, dx}{6}\right ] \]